A Synonymous Genetic Alteration of LMX1B in a Family with Nail-Patella Syndrome

نویسندگان

  • Joo Ho Ham
  • Seok Joon Shin
  • Kyu Re Joo
  • Sung Min Park
  • Hye Young Sung
  • Joong Seok Kim
  • Jin Soo Choi
  • Yeong Jin Choi
  • Ho Cheol Song
  • Eui Jin Choi
چکیده

The gene responsible for nail-patella syndrome, LMX1B, has recently been identified on chromosome 9q. Here we present a patient with nail-patella syndrome and an autosomal dominant pattern of inheritance. A 17-year-old girl visited our clinic for the evaluation and treatment of proteinuria. She had dystrophic nails, palpable iliac horns, and hypoplastic patellae. Electron microscopy of a renal biopsy showed irregular thickening of the glomerular basement membrane. A family history over three generations revealed five affected family members. Genetic analysis found a change of TCG to TCC, resulting in a synonymous alteration at codon 219 in exon 4 of the LMX1B gene in two affected family members. The same alteration was not detected in an unaffected family member. This is the first report of familial nail-patella syndrome associated with an LMX1B in Korea mutation, However, we can not completely rule out the possibility that the G-to-C change may be a single nucleotide polymorphism as this genetic mutation cause no alteration in amino acid sequence of LMX1B.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nail-patella syndrome: identification of mutations in the LMX1B gene in Dutch families.

Nail-patella syndrome is an autosomal dominant disorder characterized by dyplasia of finger nails, skeletal anomalies, and, frequently, renal disease. It has recently been shown that this disorder is caused by putative loss-of-function mutations in a transcription factor (LMX1B) belonging to the LIM-homeodomain family, members of which are known to be important for pattern formation during deve...

متن کامل

The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes.

Patients with nail-patella syndrome often suffer from a nephropathy, which ultimately results in chronic renal failure. The finding that this disease is caused by mutations in the transcription factor LMX1B, which in the kidney is expressed exclusively in podocytes, offers the opportunity for a better understanding of the renal pathogenesis. In our analysis of the nephropathy in nail-patella sy...

متن کامل

A Microdeletion of Chromosome 9q33.3 Encompasses the Entire LMX1B Gene in a Chinese Family with Nail Patella Syndrome

Nail patella syndrome (NPS) is an autosomal dominant disorder characterized by nail malformations, patellar apoplasia, or patellar hypoplasia. Mutations within the LMX1B gene are found in 85% of families with NPS; thus, this gene has been characterized as the causative gene of NPS. In this study, we identified a heterozygous microdeletion of the entire LMX1B gene using multiplex ligation-depend...

متن کامل

Nail-patella syndrome—a novel mutation in the LMX1B gene

Nail-patella syndrome (NPS) is an autosomal-dominant pleiotropic disorder characterized by dyplasia of finger nails, skeletal anomalies and frequently renal disease. In the reported case, genetic analysis revealed a new missense mutation in the homeodomain of LMX1B, presumed to abolish DNA binding (c.725T>C, p.Val242Ala). A missense mutation at codon 725 was identified, where thymine was replac...

متن کامل

Clinico-Genetic Study of Nail-Patella Syndrome

Nail-patella syndrome (NPS) is an autosomal dominant disease that typically involves the nails, knees, elbows and the presence of iliac horns. In addition, some patients develop glomerulopathy or adult-onset glaucoma. NPS is caused by loss-of-function mutations in the LMX1B gene. In this study, phenotype-genotype correlation was analyzed in 9 unrelated Korean children with NPS and their affecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2009